Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Imaging Behav ; 18(1): 192-206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985612

RESUMO

Advanced carotid stenosis is a known risk factor for ischemic stroke and vascular dementia, and it is associated with multidomain cognitive impairment as well as asymmetric alterations in hemispheric structure and function. Here we introduced a novel measure-the asymmetry index of amplitude of low-frequency fluctuations (ALFF_AI)-derived from resting-state functional magnetic resonance imaging. This measure captures the hemispheric asymmetry of intrinsic brain activity using high-dimensional registration. We aimed to investigate functional brain asymmetric alterations in patients with severe asymptomatic carotid stenosis (SACS). Furthermore, we extended the analyses of ALFF_AI to different frequencies to detect frequency-specific alterations. Finally, we examined the coupling between hemispheric asymmetric structure and function and the relationship between these results and cognitive tests, as well as the white matter hyperintensity burden. SACS patients presented significantly decreased ALFF_AI in several clusters, including the visual, auditory, parahippocampal, Rolandic, and superior parietal regions. At low frequencies (0.01-0.25 Hz), the ALFF_AI exhibited prominent group differences as frequency increased. Further structure-function coupling analysis indicated that SACS patients had lower coupling in the lateral prefrontal, superior medial frontal, middle temporal, superior parietal, and striatum regions but higher coupling in the lateral occipital regions. These findings suggest that, under potential hemodynamic burden, SACS patients demonstrate asymmetric hemispheric configurations of intrinsic activity patterns and a decoupling between structural and functional asymmetries.


Assuntos
Estenose das Carótidas , Disfunção Cognitiva , Humanos , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico
2.
Front Aging Neurosci ; 14: 1091829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36711201

RESUMO

Background and purpose: Patients with asymptomatic carotid stenosis, even without stroke, are at high risk for cognitive impairment, and the neuroanatomical basis remains unclear. Using a novel edge-centric structural connectivity (eSC) analysis from individualized single-subject cortical thickness networks, we aimed to examine eSC and network measures in severe (> 70%) asymptomatic carotid stenosis (SACS). Methods: Twenty-four SACS patients and 24 demographically- and comorbidities-matched controls were included, and structural MRI and multidomain cognitive data were acquired. Individual eSC was estimated via the Manhattan distances of pairwise cortical thickness histograms. Results: In the eSC analysis, SACS patients showed longer interhemispheric but shorter intrahemispheric Manhattan distances seeding from left lateral temporal regions; in network analysis the SACS patients had a decreased system segregation paralleling with white matter hyperintensity burden and recall memory. Further network-based statistic analysis identified several eSC and subgraph features centred around the Perisylvian regions that predicted silent lesion load and cognitive tests. Conclusion: We conclude that SACS exhibits abnormal eSC and a less-optimized trade-off between physical cost and network segregation, providing a reference and perspective for identifying high-risk individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...